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• Finite register lengths and A/D g g
converters cause errors in:-

(i) Input quantisation.(i) Input quantisation.
(ii) Coefficient (or multiplier) 

quantisationquantisation
(iii) Products of multiplication 

t t d d d d ttruncated or rounded due to 
machine length 
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• Quantisation
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• The pdf for e using rounding
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• Let input signal be sinusoidal of unity 

amplitude.  Then total signal power
2
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• If b bits used for binary then 
so that
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• Consider a simple example of finite 

precision on the coefficients a,b of second 
order system with poles               θρ je±
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• where 2ρ=bθρ cos2=a
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bit pattern 2  ,cos2 ρθρ ρ

•

000 0 0
001 0.125 0.354
010 0.25 0.5
011 0.375 0.611
100 0.5 0.707
101 0.625 0.791
110 0.75 0.866
111 0.875 0.935111 0.875 0.935
1.0 1.0 1.0
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• Finite wordlength computations
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LimitLimit--cycles; "Effective Pole"cycles; "Effective Pole"
Model; DeadbandModel; DeadbandModel; Deadband Model; Deadband 

• Observe that for
)1(
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• instability occurs when
• i.e.  poles are

12 →b
p

• (i)  either on unit circle when complex
• (ii) or one real pole is outside unit(ii) or one real pole is outside unit 

circle.
• Instability under the "effective pole" modelInstability under the effective pole model 

is considered as follows 
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• In the time domain with  
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• With for instability we have 
i di ti i h bl f
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• With rounding, therefore we have 

are indistinguishable (for integers)
5.0)2(2 ±−nyb )2( −ny
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or
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• The range of integers

21
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constitutes a set of integers that cannot be 
individually distinguished as separate or from the

2

individually distinguished as separate or from the 
asymptotic system behaviour.

• The band of integers
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is known as the "deadband".
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• In the second order system, under rounding, the 
output assumes a cyclic set of values of the 
d db d Thi i li it ldeadband.  This is a limit-cycle.
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• Consider the transfer function
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• if poles are complex then impulse response         
is given by kh
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• Where 2b=ρ ⎟
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• If              then the response is sinusiodal 
with frequency

⎠⎝ 2
12 =b
q y

⎟
⎠
⎞⎜

⎝
⎛−= −

2cos1 11 b
T

ω

• Thus product quantisation causes instability 
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• Consider infinite precision computations for
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• Now the same operation with integer 

precision
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• Notice that with infinite precision the 
response converges to the originp g g

• With finite precision the reponse does not• With finite precision the reponse does not 
converge to the origin but assumes 
cyclically a set of values the Limit Cyclecyclically a set of values –the Limit Cycle
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• Assume            ,           ….. are not { })(1 ke { })(2 ke

correlated, random processes etc.
∑=
∞ 222

0 )(iei khσσ
12

22 Q=σ
Hence total output noise power 

∑
=0

0 )(
k

iei 12eσ

[ ]+∞− 22 )1(sin2 b k θ[ ]
∑

+=+=
∞

=0
2

22
02

2
01

2
0 sin

)1(sin.
12

2.2
k

k k
θ

θρσσσ

b• Where              andbQ −= 2
[ ] 0;)1(sin)()( ≥

+ kkkhkh k θρ [ ] 0 ;
sin

)(.)()( 21 ≥== kkhkh k

θ
ρ



Finite Wordlength EffectsFinite Wordlength Effectsgg

• ie
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• For FFT A(n)
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• FFT
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• FFT IMAG 1.0
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• Linear modelling of product quantisation 
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• For rounding operations q(n) is uniform 

distributed between       ,      and  where Q is 
the quantisation step (i.e. in a wordlength of  

2
Q
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bits with sign magnitude representation or 
mod 2,              ).bQ −= 2

• A discrete-time system with quantisation at 
the output of each multiplier may be p p y
considered as a multi-input linear system
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• For zero input  i.e.                     we can writennx ∀=  ,0)(
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• However
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• ie we can estimate the maximum swing at 
the output from the system parameters and p y p
quantisation level


